Trong toán học, phương trình Diophantos là phương trình đa thức, thường bao gồm ít nhất hai biến và các nghiệm của phương trình phải là số nguyên. Phương trình Diophantos tuyến tính là phương trình trong đó tổng của hai hay nhiều hơn đơn thức bằng với một hằng số nào đó, và mỗi đơn thức có bậc một. Phương trình Diophantos mũ là phương trình mà trong đó biến nằm trong số mũ của lũy thừa nào đó. Các bài toán Diophantos thường có ít phương trình hơn số biến và yêu cầu phải tìm tất cả các số nguyên là nghiệm của tất cả các phương trình. Bởi vậy, từ hệ phương trình ta định nghĩa ra đường cong đại số, mặt phẳng đại số, hay tổng quát hơn là tập đại số. Việc học và nghiên cứu các khái niệm này là một phần của hình học đại số, nhánh đó được gọi là hình học Diophantos. Từ Diophantos nói đến nhà toán học Hy Lạp của thế kỷ thứ ba, Diofantos xứ Alexandria, người đã nghiên cứu các phương trình dưới dạng đó, và là một trong những nhà toán học đầu tiên giới thiệu các ký hiệu toán học cho đại số. Việc nghiên cứu các bài toán Diophantos được gọi là giải tích Diophantos. Trong khi các bài toán riêng lẻ thường được dùng làm bài đố và được xét từng bài một qua lịch sử, tìm ra lý thuyết tổng quát cho các phương trình Diophantos (trên cả trường hợp tuyến tính và toàn phương) được coi là thành tựu của toán học thế kỷ 20.