Phân loại nhị phân (tiếng Anh: Binary classification) là nhiệm vụ phận loại các phần tử của một tập hợp các đối tượng ra thành 2 nhóm dựa trên cơ sở là chúng có một thuộc tính nào đó hay không (hay còn gọi là tiêu chí). Một số nhiệm vụ phân loại nhị phân điển hình:
kiểm tra y khoa xem một bệnh nhân có bệnh nào đó hay không (thuộc tính để phân loại là căn bệnh đó) quản lý chất lượng trong nhà máy, ví dụ: xác định xem một sản phẩm làm ra là đủ tốt để bán chưa, hay nên loại bỏ nó (thuộc tính để phân loại là tính đủ tốt) xác định xem một trang hay một bài báo có nên nằm trong tập kết quả của một truy vấn hay không (thuộc tính là độ liên quan của bài báo - thường là sự hiện diện của một số từ nào đó trong bài báo đó) Phân loại nói chung là một trong những vấn đề được nghiên cứu trong khoa học máy tính với mục đích học tự động các hệ thống phân loại. Một số phương pháp thích hợp cho việc học phân loại nhị phân gồm có: cây quyết định, mạng Bayes, support vector machine, và mạng nơron.