Định lý của Ribet
--- Định lý của Ribet (hay Phỏng đoán Epsilon - Phỏng đoán ε, tiếng Anh: Ribet's theorem) là một phần của lý thuyết số. Nó đề cập tới đến các thuộc tính của các biểu diễn Galois liên kết với các dạng mô-đun. Nó được đề xuất lần đầu tiên bởi Jean-Pierre Serre và được chứng minh bởi Ken Ribet. Chứng minh cho định lý này là một bước quan trọng đối với chứng minh Định lý cuối cùng của Fermat. Cùng với Định lý Taniyama–Shimura đã được chứng minh thông qua việc chứng minh định lý này, hai nhà Toán học trên đã đi tới kết luận việc định lý cuối cùng của Fermat là chính xác. Về mặt Toán học, định lý Ribet chỉ ra rằng nếu biểu diễn Galois kết hợp với một đường cong elliptic có một số tính chất nhất định, thì đường cong đó không thể là mô-đun (theo nghĩa là không thể tồn tại một dạng mô-đun dẫn đến biểu diễn giống nhau). ---Nguồn: Wikipedia - Danh mục: Khoa học